文章编号: 1009 - 0568(2007)01 - 0001 - 03

甘草多糖清除自由基活性的研究

杨玲¹汪河滨²罗锋²

(1 塔里木大学文理学院,新疆 阿拉尔 843300)

(2) 新疆生产建设兵团塔里木盆地生物资源保护与利用重点实验室,新疆 阿拉尔 843300)

摘要 本文利用超声 - 微波协同萃取法提取甘草多糖,并用分光光度法检测甘草多糖对 DPPH自由基、羟自由基 $(\cdot OH)$ 和超氧阴离子自由基 $(O_2 \cdot \cdot)$ 的清除能力。结果表明,甘草多糖溶液对 DPPH自由基、 $\cdot OH$ 和 $O_2 \cdot \cdot$ 均具有较好的清除作用。 关键词 甘草多糖;DPPH自由基,羟自由基 $(\cdot OH)$;超氧阴离子自由基 $(O_2 \cdot \cdot)$ 中图分类号:R285.5

Study on Scavenging Free Radical Activity with Polysaccharides in Glycyrrhiza Uralcusis Fisch

Yang Ling¹ Wang Hebin² Luo Feng²

(1 College of Arts and Science, Tarin University, Alar, Xinjiang 843300)

(2 Key Laboratory of Protection & Utilization of Biological Resource in Tarim Basin of Xinjiang Production and Construction Groups, Tarim University, Alar, Xinjiang 843300)

Abstract The study uses ultrasonic - microwave synergistic extraction technique to extract polysaccharides of Glycyrrhiza uralensis Fisch and tests the scavenging quality of polysaccharides on DPPH free radical, hydroxyl free radical(\cdot OH) and super oxide free radical(O_2^- ·) by spectrophotometry. The result shows that polysaccharides has good scavenging effect on DPPH \cdot , \cdot OH and O_2^- ·. **Key words** polysaccharides in Glycyrrhiza uralensis Fisch; DPPH free radical; hydroxyl free radical; super oxide free radical

甘草 (Glycyrmiza uralensis Fisch)系豆科 (Legumino sae)甘草属多年生草本植物,是最常用而很有用的中药材^[1]。其化学成分主要有三萜皂苷类化合物 (甘草酸、甘草次酸)、甘草黄酮、甘草多糖等。研究表明,甘草多糖具有免疫调节作用,能抑制变态反应,并具有较强的抗肿瘤作用和抗病毒作用^[2],而对其清除自由基作用的研究却很少见报道。

近年的研究结果表明,在生物体内,需氧代谢的氧化还原反应所产生的羟自由基,可以引发不饱和脂肪酸发生脂质过氧化反应,损伤膜结构及功能并引起各类疾病;超氧自由基能损伤生命大分子而导致各种疾病。目前,自由基的研究方法有电化学法、

电子自旋共振法和分光光度法等^[3]。本文采用分光光度法对甘草多糖的 DPPH自由基、羟自由基和超氧阴离子自由基清除能力进行了初步的探讨。

1 材料与方法

- 1.1 材料与仪器
- 1.1.1 仪器

Sartorius S210S电子天平 (北京塞多利斯天平有限公司);

超声 —微波协同萃取仪 (上海新拓微波溶样测试有限公司):

超纯水仪 (美国 Millipore公司);

收稿日期:2007-01-10

基金项目:塔里木大学校长重点基金(编号:2004-6):新疆维吾尔自治区高等学校科研计划资助项目(编号:Na XJEDU2005G07)

作者简介:杨玲 (1965 -),女,教授,主要从事天然产物化学研究。 E - mail: yangling29@ yahoo.com.cn

T6-紫外可见分光光度计(北京普析通用有限 公司)。

1. 1. 2 材料与试剂

材料:乌拉尔甘草(采自新疆塔里木盆地):

试剂:二苯代苦昧酰基自由基(DPPH·), Sigma 公司:抗坏血酸 (维生素 C):维生素 E: Tris - HC1缓 冲液:pH8.2;邻苯三酚:硫酸亚铁:水杨酸:双氧水: 乙醇:盐酸以上均为分析纯。

1.2 甘草多糖提取物的制备

称取甘草粉末 10.00g,加 60%乙醇 100mL,在 50 下超声 — 微波协同萃取 2次,每次 15m in,过滤 后在药渣中加水 100mL于 75 水浴提取 2次,每次 15m in。合并两次提取液,移至 100mL量瓶中,将残 渣用水洗涤 2次,洗涤液并入量瓶中,定容作为供试 液。

1.3 抗氧化性实验

1.3.1 甘草多糖对 DPPH自由基的清除实验

DPPH 溶液的配制:准确称取 44mgDPPH,用无 水乙醇溶解并定容于 100mL 容量瓶中, DPPH 浓度 为 120µmo1/L,避光保存(0~4)。

将甘草多糖提取液稀释 400倍后取 0.1mL与 3 mL120 µmo1/L DPPH溶液加入同一试管中,摇匀, 在黑暗中放置 30m in,以无水乙醇为空白在 517nm 测定其吸光度 A,并以下式计算其清除率:

清除率 = [(Ac - Ai)/Ac] ×100%

式中: Ac: 0. 1mL无水乙醇加 3. 0mLDPPH溶液的吸 光度:

Ai: 0. 1mL 待测液加 3. 0mLD PPH 溶液的吸光度。 按照上面公式计算清除率,清除率越大抗氧化能力 越强。

1.3.2 甘草多糖对羟自由基 (·OH)的清除实验

按照 Sm imof (1989)的方法,利用 H₂O₂与 Fe²⁺ 混合产生·OH在体系内加入水杨酸捕捉·OH并 产生有色物质,该物质在 510nm 下有最大吸收^[4]。

反应体系中含 9. 8mmol/L H₂O₂ 2mL, 9mmol/L FeSO₄ 2mL, 9mmol/L水杨酸 - 乙醇 2mL,不同浓度 的甘草多糖溶液 2mL。最后加 H₂O₂ 启动反应, 37 反应 30m in,以超纯水为参比,在 510nm 下测量 各浓度的吸光度。考虑到多糖本身的吸收光值,以 9mmol/L FeSO₄ 2mL, 9mmol/L水杨酸 - 乙醇 2mL, 不同浓度的多糖溶液 2mL和 2mL超纯水作为多糖 的本底吸收。

清除率计算公式为:

清除率 (%) = [($A_0 - (A_x - A_{x0})) / A_0$] ×100% 式中: A。: 为空白对照液的吸光度:

A。: 为加入多糖溶液后的吸光度:

A_{vo}:为不加显色剂 H₂O₂ 多糖溶液本底的吸光度。

1.3.3 甘草多糖对超氧阴离子自由基(O₂)的清 除实验

1.3.3.1 采用邻苯三酚自氧化法的测定

取 5mL, pH8 2,50mmol/L Tris - HCI缓冲液。 2mL超纯水,混匀后在 25 水浴中保温 20m in。取 出后立即加入在 25 预热过的 3mmol/L 邻苯三酚 0.5mL(以 10mmol/L HC 配制 .空白管用 10mmol/L HCI代替邻苯三酚的 HCI溶液),迅速摇匀后倒人 比色杯,420nm下每隔 30s测定吸光度值。

1. 3. 3. 2 样品活性测定[5]

在加入邻苯三酚前,先加入一定体积的多糖溶 液 .超纯水减少 .然后按采用邻苯三酚自氧化法测定 的方法操作,并计算抑制率。抑制率(1%)计算公 式为:

 $I\% = [1 - (A_3 - A_4) / (A_1 - A_2)] \times 100$

A: 不舍样品的吸光度值;

A₂:不含样品和邻苯三酚的吸光度值;

A₃:含有样品的吸光度值:

A4:含样品,但不含邻苯三酚的吸光度值。

结果与分析

2 1 甘草多糖对 DPPH ·的清除作用

取甘草多糖 3份,每份 1mL,按 1.3.1的方法自 "将甘草多糖提取液稀释 400倍后取 0.1mL与 3 mL120 µmo1/L DPPH溶液加入同一试管中 起依法 测定,并计算其清除率,结果见表 1。

表 1 不同提取方法多糖抗氧化作用比较

样品质量	/g 浓度 / mg/mL	清除率 / %	RSD
5. 00	0. 125	14. 25	
5. 00	0. 125	14. 07	1. 04%
5. 00	0. 125	13. 96	

由表 1可知,甘草多糖对 DPPH ·的清除能力 比较明显,而且清除效果稳定。

2 2 不同抗氧化剂清除 DPPH自由基的比较

分别取甘草多糖(超声 --微波协同萃取)、维生 素 C.维生素 E三种抗氧化剂 0. 1mL与 3 mL120 µmo1/L DPPH溶液加入同一试管中,按 1. 3. 1的方

法自"摇匀,在黑暗中放置 30m in 起依法测定,并计 算其清除率.结果见表 2。

表 2 不同抗氧化剂清除 DPPH 自由基的比较

	浓度 / mg/mL	清除率/%
甘草多糖	0. 100	9. 27
维生素 C	0. 100	23. 98
维生素 E	0. 100	6. 2

由表 3可以看出,在浓度基本相同条件下,甘草 的抗氧化能力强于维生素 E.但比维生素 C弱。

2.3 甘草多糖对羟自由基和超氧阴离子自由基的 清除能力

对甘草清除自由基能力的测定分析结果见表 3。

表 3 甘草清除自由基能力的测定

清除羟自由基(·OH清除超氧阴离子自由基(O2)						
1	1. 00	26. 87	0. 25	14. 3		
2	2 00	27. 98	0. 50	15. 2		
3	3. 00	32 63	0. 75	34. 8		
4	4. 00	12. 45	1. 00	6. 2		

从甘草多糖清除自由基能力的测定分析结果 看,多糖对羟自由基和超氧阴离子自由基都有一定 的清除能力,清除效果与多糖浓度的关系在一定浓 度范围内呈现正相关。

讨论 3

- 3.1 甘草多糖对 DPPH自由基、羟自由基和超氧 阴离子自由基都有清除能力。在一定浓度范围内, 甘草多糖对羟自由基和超氧阴离子自由基的清除效 果与多糖浓度成正相关。
- 3.2 甘草多糖具有较好的清除羟基自由基的活 性,而清除超氫阴离子自由基能力不如清除羟基自 由基的能力。
- 3.3 甘草多糖含量较高、提取丁艺简单、重复性好、 而且对环境无污染,并能有效清除自由基,具有很高 的开发利用前景。

参考文献

- [1] 金宏. 浅谈甘草药理作用. 时珍国医国药, 2000, 11 $(1):78 \sim 79$
- [2] 惠寿年,董阿玲,国内对甘草化学成分的研究进展,中 草药,1999,30(4):313~315.
- [3] 崔文新、张静静、耿越、几种天然植物色素清除自由基 能力比较研究. 山东师范大学学报 (自然科学版), $2006, 21(2): 105 \sim 107.$
- [4] 颜军,郭小强,邬晓勇,等.银耳多糖的提取及其清除 自由基作用. 成都大学学报, 2006, 25(1): 35~38
- [5] 韩强,林惠芬.一些天然提取物对超氧自由基和羟基 自由基的清除作用. 日用化学工业, 2000, 30(3): 14~ 17.