《土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法》 (报批稿) 编制说明

国家地质实验测试中心

二〇二一年二月

目 次

第一章 工作简况1
第一节 研究背景1
第二节 研究意义2
第三节 技术路线2
第四节 编制过程2
第五节 参加精密度协作试验的单位11
第二章 标准编制原则和确定标准主要内容12
第一节 标准编制原则12
第二节 确定标准主要内容13
第三章 标准方法主要条件试验研究15
第一节 概述15
第二节 条件试验15
第三节 样品测定参数18
第四节 方法质量水平20
第五节 本标准方法试验验证结论27
第六节 技术经济论证27
第四章 采用国际标准和国外先进标准的程度以及与国际、国内同类标准水平的对比情况
第五章 与有关的现行法律、法规和标准的关系29
第六章 重大分歧意见的处理经过和依据30
第七章 标准作为强制性和推荐性标准的建议31
第八章 贯彻标准的要求和措施建议32
第九章 废止现行有关标准的建议33
第十章 其他应予说明的事项34

土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法 编制说明

第一章 工作简况

第一节 研究背景

标准化工作是技术性的公益性事业,是一个国家经济和科学技术实力的重要技术基础。与国外相比,我国标准化工作还是比较落后,尤其对于 80 年代以来兴起的一些新技术新方法,如电感耦合等离子体光谱法(ICP-AES)和电感耦合等离子体质谱法(ICP-MS),其标准化工作和国外发达国家相比明显滞后,不利于我国地质调查等研究工作的开展以及国际交流与合作。目前我国已建立了一些灵敏度高、适应范围宽的新方法新技术,并得到了较好应用,不少方法的质量水平已达到国外先进水平。

本标准方法顺应国家需求,通过地质大调查项目立项"痕量超痕量分析新技术新方法在地质调查中的开发应用研究"(项目编号: 200020190120; 起止年限: 2000.1-2002.12), 建立了一批新的痕量超痕量元素分析方法, 其中"半熔-电感耦合等离子体质谱法测定土壤、水系沉积物中的碘、溴"属于其研究内容之一。通过地质大调查项目立项"感耦等离子体光谱和质谱分析标准方法"(项目编号: 200120190099-02; 起止年限: 2003.1-2005.12)将新建立并已应用的 ICP-MS 和ICP-AES 分析新技术、新方法制订为国家标准方法,其中本标准"土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法"是其中之一。通过国家地质

实验测试中心院所长基金项目立项"土壤、水系沉积物中碘、溴分析方法标准完善"(项目编号: 2013CSJ04; 起止年限: 2013.1-2013.12)对拟制订为国家标准的"土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法"进行系统完善,包括方法协作试验数据的补充、整理、分析,以及标准方法送审稿、编制说明的再整理和完善。

根据《国家标准委关于下达 2012 年第一批国家标准制修订计划的通知》,国标委综合〔2012〕50 号文,本标准方法于 2012 年获批标准计划号: 20120666-T-334。

第二节 研究意义

通过"土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法标准方法研制"工作,可以形成土壤、水系沉积物检测技术标准 1 项,填充我国有关 ICP-MS 分析技术的标准。为我国开展碘、溴生态环境地质大调查及碘、溴与人体健康研究等提供有力的技术支撑。

第三节 技术路线

本标准方法制定的技术路线: 充分调研并收集国内外相关资料,采用分析方法建立、方法应用、方法验证试验、文字编写、精密度协作试验、数理统计分析相结合的方法,并对编写的标准方法进行征求专家意见,在征求专家意见的基础上进行可能的试验和修订,最终形成报批稿。

第四节 编制过程

按照中华人民共和国标准化管理规定,由国家地质实验测试中心负责本标准的研究起草工作,本标准方法的总体编写过程如下:

方法调研及新方法建立→实际应用、验证和完善→精密度实验→完成征求意 见稿→征求专家意见→根据专家意见修改,形成送审稿→标委会审查→根据专家 意见进行再修改,最终形成报批稿。

1、起草阶段

2000年1月,成立了本标准方法项目研究工作小组,确定了本标准的制订方案和研制计划。在大量资料包括国内外相关分析方法文献、国内外相关碘、溴含量分析方法标准等的广泛调研、认真研究的基础上,于2000年1月-2002年12月期间项目组开发建立了"半熔-电感耦合等离子体质谱法测定土壤、水系沉积物中碘、溴含量"的分析方法。

2002年1月-2002年12月期间,项目组开展了本标准方法验证试验和实验室内的方法检出限、正确度、精密度试验,同时形成了国家地质实验测试中心作业指导书。

2002 年 3 月开始,项目组成员查询了土壤、水系沉积物中碘、溴含量测定的相关标准。目前,国内有关碘、溴含量分析测定方法多集中在生物样品中,如《食品安全国家标准 婴幼儿配方食品和乳品中碘的测定》GB/T 5413.23-2010;《饲料中碘的测定 硫氰酸铁-亚硝酸催化动力学法》GB/T 13882-2010;《小麦粉中溴酸盐的测定 离子色谱法》GB/T 20188-2006; 2016 年颁布了《区域地球化学样品分析方法 第 24 部分: 碘量测定 电感耦合等离子体质谱法》DZ/T 0279.24-2016, 该标准适用范围只能测定碘含量。《区域地球化学样品分析方法 第 22 部分: 氯和溴量的测定 离子色谱法》,该标准采用的是离子色谱法。截至目前,采用半熔-电感耦合等离子体质谱法测定土壤、水系沉积物中的碘、溴含量还没有国家标准、行业标准发布。

通过对相关标准及文献的调研,2003年10月项目组编写完成了本标准方法初稿。

2004年1月-3月期间,项目组开始组织筹备本标准方法实验室协作试验工作,包括协作实验室、协作样品的选择;本标准方法精密度协作试验作业指导书的起草;技术服务合同的起草等。最终项目组选取了5家实验室加上本单位共计6家实验室参加本标准方法的实验室协作试验。参加本次精密度协作试验的单位有:国家地质实验测试中心,有色金属西北矿产地质测试中心,地矿部吉林省中心实验室,武汉综合岩矿测试中心,南京综合岩矿测试中心。

2004年4月项目组于北京组织协作实验室相关实验人员开展本标准方法培训、推广应用及技术服务合同签订等工作。同时将选取的 6 个土壤、水系沉积物协作样品,分别发往选定的实验室对不同浓度水平的碘、溴进行本标准方法的实验室协作试验。

2004年11月,6家协作实验室协作试验数据全部收回,统计6家实验室的精密度试验分析数据,根据《测量方法与结果的准确度(正确度与精密度)第2部分:确定标准测量方法重复性与再现性的基本方法》(GB/T6379.2)和《测量方法与结果的准确度(正确度与精密度)第4部分:确定标准测量方法正确度的基本方法》(GB/T6379.4),运用相应的软件进行数据统计检验,进行重复性r、再现性r、再现性r、重复性标准差r。再现性标准差r0。有完成计量计算,编写本标准方法和编制说明初稿。

2004年12月在北京项目组邀请10名相关领域专家对初稿进行会审,对本标准方法文本和编制说明初稿提出修改意见。本次标准会审专家主要对本标准方法整体的编写格式、规范性引用文件、字体符号的规范性等问题提出修改建议。

2005年1月-7月期间,项目组成员在相关标准的收集、调研以及初稿会审专家意见汇总的基础上,按照标准方法编写要求,依据标准制修订的基本原则要求进行本标准方法文本的征求意见稿编写。编写完成后,经项目组成员的多次审核、校对,提出修改意见,修改后于2005年8月形成"土壤、水系沉积物 碘、溴的测定 半熔-电感耦合等离子体质谱法"征求意见稿,同时编制本标准方法的编制说明征求意见稿。

2、征求意见阶段

2005年12月在北京项目组邀请10名相关领域专家对本标准征求意见稿进行会审,对本标准征求意见稿及编制说明征求意见稿提出修改意见。本次标准会审专家主要对试剂或材料所包含的内容、参考文献、书写规范性等问题提出修改建议。

2006年1月-2007年12月期间,项目组成员在征求意见稿会审专家意见汇总的基础上,按照标准方法编写要求,依据标准制修订的基本原则要求进行本标准方法文本的征求意见稿修改完善工作。

2008年5月,全国国土资源标准化技术委员会地质矿产实验测试分技术委员会在北京组织标准方法审查会(SAC/TC93/SC4)。由于当时审查标准为硅酸盐系列,本标准方法为土壤、水系沉积物样品,无法纳入其中,所以本标准方法根据专家建议延后申报。

2009年1月-2010年12月,根据专家意见,项目组成员对实验方法细节进行进一步的完善讨论,对本标准文本及编制说明进行进一步的修改完善。

2011年1月-12月,项目组着手准备召开本标准方法审查会,进行本标准的再次审查工作。

- 2012年3月,项目组欲组织相关专家对本标准方法内容进行再次审查、申报,推进工作,根据当时国家标准制订方法新的规定要求,精密度协作试验要求参加的实验室数目至少为8家,每个标准方法至少需要5个浓度水平的协作试验样品进行精密度协作试验,原多家实验室的精密度协作试验结果已不能满足现有国家标准制订的新规定要求。
- 2013年1月项目组立项"土壤、水系沉积物中碘、溴分析方法标准完善",组织第二次相关分析实验室进行本标准方法的精密度协作试验研究工作。
- 2013年3月,项目组选取了8家实验室加上本单位共计9家实验室参加本标准方法的实验室协作试验。本次参加精密度协作试验的单位有:国家地质实验测试中心,河南省岩矿测试中心郑州技术服务部,湖北省地质实验研究所,中国地质科学院地球物理地球化学勘查研究所,山东省地质科学实验研究院、中国地质调查局西安地质调查中心、中国地质调查局南京地质调查中心、国土资源部南京矿产资源监督检测中心、成都地质矿产研究所。选择6个不同浓度范围的土壤、水系沉积物协作样品,分别发往选定的实验室对不同浓度水平的碘、溴进行本标准方法的实验室协作试验。

项目组成员的多次审核、校对,提出修改意见,修改后于2013年12月再次形成"土壤、水系沉积物 碘、溴的测定 半熔-电感耦合等离子体质谱法"征求意见稿,同时编制本标准方法的编制说明征求意见稿。

2013年12月,项目组向国内地矿、冶金、有色等相关行业的20个单位专家发出征求意见通知、征求意见表和本标准方法文本、本标准方法编制说明征求意见稿。

2014年10月征求意见表全部收回。收到共计49条修改意见,项目组结合两次征求意见、建议,进行了认真的归纳、总结,形成了专家意见汇总表。其中,结合其他专家意见1条未采纳,其他全部采纳。根据采纳的意见和建议对本标准方法和编制说明中进行修订,并对不采纳和部分采纳的意见和建议进行了说明。

本标准方法第二次精密度协作试验所选用的 6 个协作试验样品中有 3 个 (GCS-1、GCD-1、GCD-2) 为中国地质科学院地球物理地球化学勘查研究所协助配制,在进行实验室间协作试验数据统计分析过程中,发现碘元素分析结果较差,离散性较大,协作试验数据统计表如表 1、表 2 所示。

2015年1月-2016年12月期间,项目组成员对第二次精密度协作试验数据及统计分析结果进行了讨论分析,同时咨询了相关领域专家,分析其原因认为主要与该协作试验样品的配制方法有关。该三个协作样品主要由土壤、水系沉积物标准物质与碘、溴标准溶液混合配制而成,本标准方法分析流程相对较长,碘易挥发损失,使得样品分解过程中碘可能会有损失,此外,协作实验室对本标准方法掌握程度不同,也会造成协作试验数据结果不理想。

2017年1月-12月,项目组成员着手准备开展第三次本标准方法的实验室协作试验,包括协作样品的选择、协作实验室的调研、协作试验合同的准确等工作。

同时根据标准编写要求对本标准文本进行进一步的完善修改。

2018年1月,项目组选取了7家有经验实验室加上本单位共计8家实验室开展第三次本标准方法的实验室协作试验。本次参加精密度协作试验的单位有:国土资源部长沙矿产资源监督检测中心、国土资源部济南矿产资源监督检测中心、国土资源部长春矿产资源监督检测中心、国土资源部武汉矿产资源监督检测中心、国家地质实验测试中心、河南省岩石矿物测试中心、国土资源部南京矿产资源监督检测中心、国土资源部西安矿产资源监督检测中心。选择7个不同浓度范围的土壤、水系沉积物协作样品,分别发往选定的实验室对不同浓度水平的碘、溴进行本标准方法的实验室协作试验。

2018年10月,8家协作实验室协作试验数据全部收回,统计8家实验室的精密度试验分析数据,根据《测量方法与结果的准确度(正确度与精密度)第2部分:确定标准测量方法重复性与再现性的基本方法》(GB/T6379.2)和《测量方法与结果的准确度(正确度与精密度)第4部分:确定标准测量方法正确度的基本方法》(GB/T6379.4),运用相应的软件进行数据统计检验,进行重复性r、再现性r、再现性r、重复性标准差r0、再现性标准差r0、再现性标准差r0、再现性标准差r0、有完成。

表 1 第二次碘协作试验数据统计表

样品/水平	GCS-1	GCS-2	GCS-3	GCD-1	GCD-2	GCD-3
重复测定次数 n	4	4	4	4	4	4
参加实验室数 P	9	9	9	9	9	9
可接受实验室数 p	9	9	9	8	6	7
重复性标准差 Sr	1.75	0.07	0.77	0.83	0.05	0.08
重复性变异系数 (%)	9.67	11.45	11.18	6.74	16.84	12.59
再现性标准差 S_R	12.9	0.1	0.17	7.2	0.23	0.14
再现性变异系数	71.34	16.06	16.91	58.42	76.56	21.27

(%)						
重复性限 2.8×S _r	4.9	0.2	2.16	2.33	0.14	0.24
再现性限 2.8×S _R	36.1	0.28	3.27	20.15	0.63	0.4
γ	7.38	1.4	1.51	8.66	4.55	1.69
A	0.66	0.69	0.68	0.65	0.66	0.68
总平均值 (y)	50.2	1.85	19.37	34.4	0.83	1.92
标准值(μ)	(68.6)	1.8±0.2	19.4±0.9	(42)	(0.842)	2.0±0.3
相对误差 RE(%)	-25.38	-2.56	0.56	-17.05	-0.95	-5.15
测量方法偏倚 (δ)	-17.41	-0.046	0.11	-7.16	-0.008	-0.103
置信区间 δ - AS_R	-25.87	-0.114	-0.686	-11.87	-0.157	-0.199
置信区间 δ + AS_R	-8.964	0.023	0.903	-2.451	0.14	-0.007

表 2 第二次溴协作试验数据统计表

样品/水平	GCS-1	GCS-2	GCS-3	GCD-1	GCD-2	GCD-3
重复测定次数 n	4	4	4	4	4	4
参加实验室数 P	9	9	9	9	9	9
可接受实验室数 p	7	8	7	6	8	8
重复性标准差 Sr	0.823	0.137	0.317	0.846	0.105	0.091
重复性变异系数 (%)	3.05	9.19	11.05	6.16	26.29	12.03
再现性标准差 SR	5.01	0.46	0.526	1.86	0.29	0.20
再现性变异系数 (%)	18.54	30.6	18.31	13.56	72.5	26.57
重复性限 2.8×S _r	2.303	0.384	0.888	2.368	0.29	0.254
再现性限 2.8×S _R	14.02	1.28	1.47	5.21	0.809	0.56
γ	6.09	3.33	1.66	2.20	2.76	2.21
A	0.655	0.659	0.677	0.667	0.662	0.667
总平均值(y)	71.3	4.39	8.46	36.6	1.31	2.25
标准值(μ)	(84)	4.5±0.7	8±0.7	(41.7)	(0.886)	2.2±0.5
相对误差 RE(%)	-9.06	-6.04	1.54	-6.89	27.2	-3.00
测量方法偏倚(δ)	-7.61	-0.272	0.123	-2.87	0.241	-0.066
置信区间 δ - AS_R	-10.9	-0.573	-0.233	-4.12	0.05	-0.199
置信区间 δ + AS_R	-4.327	0.03	0.479	-1.634	0.433	0.068

2019年1月-2020年12月,项目组成员根据专家意见表,对本标准方法文本和编制说明逐条进行修改,最终编写成本标准方法和编制说明的送审稿。

3、审查阶段

2021年1月,全国自然资源与国土空间规划标准化技术委员会勘查技术与实验测试分技术委员会(SAC/TC93/SC3)在北京组织召开标准审查会。由于疫情原因,审查会以视频会议的形式召开,邀请19名实验测试专业委员和专家对本标准方法送审稿及本标准方法编制说明送审稿进行审查。2021年1月26日-2月4日邀请30名函审专家对本标准方法送审稿及本标准方法编制说明送审稿征求意见。本次共收到专家意见62条,主要对试样粒径的要求、原理的描述、仪器精密度等提出了修改意见和建议。项目组结合会审及函审专家所提出的意见、建议,对本标准方法送审稿及本标准方法编制说明送审稿进行了认真的归纳、总结,结合专家们意见,所提出的意见中有4条未采纳,3条部分采纳,其他全部采纳。根据专家意见对本标准方法送审稿及本标准方法编制说明送审稿进行修改,形成了报批稿,并对不采纳和部分采纳的意见和建议进行了说明。

本标准方法主要起草人及其所做的工作:

本标准方法负责起草单位: 国际地质实验测试中心。

本标准方法主要起草人:刘崴,杨红霞,李冰,马新荣,胡俊栋。

项目组人员及工作内容见表 3。

表 3 主要编制人员情况

序号	姓名	学历	专业	职称	对本标准的具体贡献
1	刘崴	硕士	分析化学	副研	项目负责人,资料收集、主要方法验证、标准及编制说明编写
2	杨红霞	博士	分析化学	教授级高工	标准的起草及方法验证
3	李冰	大学	分析化学	研究员	项目负责人,技术负责,主持项目实施,资料收集、标准起草
4	马新荣	本科	分析化学	高级工程师	方法的建立
5	胡俊栋	博士	环境地球 化学	助研	标准及主要编制说明的编写

第五节 参加精密度协作试验的单位

- 1、 国土资源部长沙矿产资源监督检测中心
- 2、 国土资源部济南矿产资源监督检测中心
- 3、 国土资源部长春矿产资源监督检测中心
- 4、 国土资源部武汉矿产资源监督检测中心
- 5、 国家地质实验测试中心
- 6、 河南省岩石矿物测试中心
- 7、 国土资源部南京矿产资源监督检测中心
- 8、 国土资源部西安矿产资源监督检测中心

第二章 标准编制原则和确定标准主要内容

第一节 标准编制原则

1、标准分析方法的适用性

本标准方法适用于电感耦合等离子体质谱(ICP-MS)测定土壤、水系沉积物中的碘、溴含量的方法。方法检出限为碘: 0.11 μg/g, 溴: 0.2 μg/g。测定范围为碘: 0.37 μg/g~100 μg/g, 溴: 0.66 μg/g~100 μg/g。可满足土壤、水系沉积物样品中碘、溴含量的测定要求。

2、标准分析方法的先进性

电感耦合等离子体质谱仪在国内外已经广泛应用于岩石、矿物、土壤、沉积物、生物等样品中痕量超痕量元素的测定,元素质子数简单,干扰相对于光谱技术少,线性范围宽,样品制备和引入相对于其他分析技术简单,既可用于元素含量分析,还可进行同位素组成的测定,测定精密度高,在实际工作中展现出了极大的优越性。

电感耦合等离子体质谱法测定碘、溴是目前最为有效的方法,电感耦合等离子体质谱是近些年来在我国迅猛发展壮大的仪器之一,在矿产资源、冶金、环境、航空等领域都有广泛的应用。该方法在灵敏度及分析效率上都优于其他方法,具有方法检出限低、测定范围宽、方法简单、快速、所用试剂少等特点,易于推广应用。

3、标准分析方法可证实性

本标准方法以分析条件验证试验、样品准确度和精密度试验等一系列基本测

量为基础,求得分析方法的检测结果相互之间相容或一致,使得检测数据的准确度统一在基本测量单位上,从而使得统一特性量值的分析测试数据在国际间也准确一致。因此,按照本标准方法中确定的条件进行试验,其准确度、精密度上都能得到证实。

4、标准分析方法编写的规范性

按照实施方案要求,本标准方法编写依据《标准化工作导则 第1部分:标准化文件的结构和起草规则》(GB/T 1.1-2020)、《标准化工作指南 第1部分:标准化和相关活动的通用术语》(GB/T 20000.1-2014)、《标准编写规则 第1部分:术语》(GB/T 20001.1-2001)、《标准编写规则 第2部分:符号标准》(GB/T 20001.2-2015)、《标准编写规则 第3部分:分类标准》(GB/T 20001.3-2015)、《标准编写规则 第4部分:试验方法标准》(GB/T 20001.4-2015)和《分析化学术语》(GB/T 14666-2003)等进行标准方法编写,并按GB/T 6379.2-2004/ISO 5725-2:1994《测量方法与结果的准确度(正确度与精密度)第二部分:确定标准测量方法重复性与再现性的基本方法》、GB/T 6379.4-2006《测量方法与结果的准确度 第4部分:确定标准测量方法正确度的基本方法》等进行精密度协作试验及正确度验证。标准方法结构合理、所用术语规范、符号信息和分类编码正确,通过精密度和正确度试验,确定了方法可重复可再现,方法偏倚不显著。

第二节 确定标准主要内容

本标准方法的主要实验参数是通过相关的条件试验来确定的。本标准方法的主要技术指标包括方法检出限、线性范围(检测范围)、精密度、准确度等。

1、方法检出限

取含待测元素含量很低的土壤样品,按照本标准方法中规定的仪器条件,将仪器调整到最佳状态,全过程连续测定10次,测定结果的3倍标准偏差即为方法检出限。

2、线性范围(检测范围)

线性范围是指特定分析方法中,方法的校准曲线的直线部分所对应的待测物质的浓度或量的变化范围。配制一系列的标准系列,由低到高分别检测,当有拐点出现时,即为曲线线性的最高点,从而确定检测的线性范围,同时参考检出限,确定检测范围。取含待测元素含量很低的土壤样品,按照本标准方法中规定的仪器条件,将仪器调整到最佳状态,全过程连续测定10次,测定结果的10倍标准偏差作为检测下限的估计值。由于ICP-MS的线性范围很宽,测定最高含量是结合了一般土壤、水系沉积物中碘、溴的含量确定的。

3、精密度试验

根据8家实验室的精密度协作试验数据,同时根据GB/T6379.2-2004/ISO 5725-2:1994《测量方法与结果的准确度(正确度与精密度)第2部分:确定标准测量方法重复性与再现性的基本方法》中相关内容进行统计计算,分别计算出碘、澳元素重复性r、重复性标准差 S_r 、再现性R、再现性标准差 S_R ,以及精密度r和水平浓度m的关系。

4、有证标准物质验证

按本标准方法试验对已有数据的有证国家标准物质进行检测,验证方法的准确性。

第三章 标准方法主要条件试验研究

第一节 概述

电感耦合等离子体质谱法(ICP-MS)广泛应用于各种物质中金属元素的测定,但对卤素等非金属元素测定的报道极少。Date 等人最早报道了采用 ICP-MS 同时测定城市尘粒标准物质中的氯、溴、碘,并对碳酸钠(氧化锌)熔融法、水提取以及硝酸或硫酸提取等样品预处理方法进行了比较。该研究报告初步显示了采用熔融法—ICP-MS 技术测定卤素等非金属元素方面的应用潜力,由于采用的熔融法引入大量熔剂以及试剂空白等因素的限制,氯、溴、碘测定当时所达到的检出限(3 σ)分别为 290、4.3 和 0.7 μ g/g。Allain 等人报道了 ICP-MS 同时测定血浆和尿液中碘和溴的方法。

地质样品中卤素的测定通常采用碳酸钠和氧化锌混合熔剂熔融法或半熔法分解,然后用热水提取以阴离子形式存在的卤素。本工作采用碳酸钠和氧化锌混合熔剂半熔法分解土壤等地质样品,用水提取待测定元素并用强酸型阳离子交换树脂分离钠、锌等大量金属阳离子,研究了用 ICP-MS 同时测定水提取液中溴、碘的可行性。结果表明,采用强酸型阳离子交换树脂将分析元素与熔剂中的大量盐类分离后,可采用低稀释倍数在高灵敏度的 ICP-MS 仪器上直接同时测定碘、溴,使分析效率显著提高。

第二节 条件试验

- 1、本标准方法原理
- 1.1 样品分解方法原理

本标准样品分解方法是在国内外文献调研的基础上,选取碳酸钠和氧化锌混合试剂在马弗炉中高温熔融,后经热水浸取,浸取液采用强酸型阳离子树脂静态交换掉溶液中大量的钠等阳离子。

1.2 本标准方法测定原理

利用电感耦合等离子体作为离子源,提取液由载气(氩气)带入雾化系统进行雾化后,以气溶胶形式进入等离子体中心区,在高温和惰性气体中被充分蒸发、解离、原子化和电离,转化成带电荷的离子经离子采集系统进入质谱仪,质谱仪根据离子的质荷比即元素的质量数进行分离并定性、定量分析。在一定浓度范围内,元素质量数上的响应值与其浓度成正比,采用校准曲线法定量测定试样溶液中的待测元素的含量。

2、试料的分解

2.1 条件试验用的样品

样品分解过程采用了一实际土壤样品,此样品中碘、溴含量适中,利于条件试验数据的比对分析。

2.2 试料分解

准确称取 1.00 g 混合熔剂于 30 mL 瓷坩埚中,再称取样品 0.2500 g 试料于 30 mL 瓷坩埚中,将样品与熔剂充分混匀,然后再称取 0.50 g 混合熔剂均匀覆盖在试料上。将瓷坩埚放入马弗炉中,从室温升至 700 °C后再保持 40 min,取出。冷却后将瓷坩埚中混合物倒入 100 mL 玻璃烧杯中,用水将坩埚冲洗干净,总体积不超过 25 mL。将玻璃烧杯置于电热板上加热煮沸大约 5 min 后取下。冷却后转移至25 mL 试管中,稀释到刻度,摇匀,静置澄清。分取 10 mL 清液于 50 mL 干玻璃烧杯中,加入 8 g 预先处理好的 732 型阳离子交换树脂,静态交换 1 小时。在静态

交换过程中需摇动 2~3 次。干过滤分离掉树脂,滤液直接用 ICP-MS 测定。室温干燥后的样品如需进行吸附水量校正,则参照 GB/T 14506.1 中规定的方法进行吸附水量校正。

2.3 样品半熔温度以及时间实验

用一实际样品进行了半熔温度实验,考察了易挥发元素 Br、I、As、Se、Sb、Bi、Hg、Te 和 Ge 等的情况。结果表明,Br、I、As 和 Se 四个元素有可能进行同时定量分析,其它元素还存在一定问题,比如 Ge 和 Sb,其信号强度一直随温度上升而上升,在 800 ℃时没有出现平台。样品中 Br、I、As 和 Se 的信号随半熔温度的变化见图 1。将温度固定为 700 ℃,实验了不同半熔时间的影响,结果表明Br 和 Se 在所实验的时间内,无显著性差别;I 在 $10\sim50$ min 无显著性差别。As 在 $20\sim60$ min 无显著性差别。实验确定半熔温度为 700 ℃,时间为 40 min。

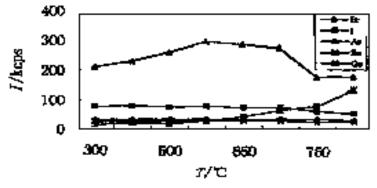


图1 半熔温度对分析信号的影响

2.4 熔剂量的选择

实验了 0.25 g 样品中加入不同量熔剂在 700 ℃焙烧 40 min 对 Br、I 的效果,结果见表 4。从实验结果看,在所实验的熔剂加入量范围内,所测元素的计数率差别并不显著。综合考虑实际操作,最终选择的溶剂量为 1.0 g+0.5 g。

表 4 不同熔剂量对分析元素计数率的影响 a

混合熔剂+覆盖熔剂/g	I/cps	Br/cps
0.15+0.5	2223148	40221
0.30+0.5	2172220	47544
0.45+0.5	2224563	39969
0.60+0.5	2286101	45241
0.75+0.5	2199806	45386
1.0+0.5	2187074	46624

注: a 0.25 g 样品

2.5 阳离子交换树脂的用量与交换时间实验

实验采用强酸型阳离子交换树脂分离溶液中大量钠、锌等阳离子,加入树脂后,溶液的 pH 会发生变化。加入量过多,溶液为酸性,碘离子容易被氧化为游离碘而损失。为了达到既分离了大量阳离子又使溶液中的碘阴离子处于稳定状态,实验了不同量强酸性阳离子树脂的分离效果。取 5 mL 过程空白溶液,加入不同量阳离子树脂,静态分离 1 h 后干过滤,用 ICP-AES 测定滤液中残留的 Na^+ 和 Zn^{2+} 。结果表明,在 5 mL 样品溶液中加入 4 g 阳离子树脂就可将溶液中残留 Na^+ 的量降到大约 24 μ g/mL,分离后的溶液中 pH 约为 5。加入 3 g 树脂,残留 Na^+ 为 376 μ g/mL,pH 约为 6。溶液中未检测到 Zn^{2+} 。实验最终取 10 mL 溶液,加入 8 g 阳离子树脂。

第三节 样品测定参数

本标准方法适用于土壤和水系沉积物中碘、溴含量的电感耦合等离子体质谱法测定。

1、测定元素所选同位素及内标元素

对于一般应用,仪器软件对分析元素提供干扰比较少的同位素由操作者选用。 也可按具体样品种类选用其他同位素,主要需考虑的是质谱和非质谱的干扰,元 素含量、同位素丰度、工作模式等。 内标元素选用分析样品中不存在的元素;选用与待测元素的质量数相近,以保证两者的动力学特性相似,如空间电荷效应对它们具有相似的影响;选用与待测元素具有相近的电离能,保证在等离子体中两者被电离的比例相似,不受同量异位素或多原子离子干扰,也不会给待测元素带来其他的影响。

本标准方法所选用的测定元素同位素为 ¹²⁷I、⁷⁹Br,内标元素同位素为 ¹⁸⁵Re。 2、调谐液的选择

根据电感耦合等离子体质谱仪操作系统的推荐,选择常用的 Be, Co, In, Ce, U混合质谱调谐液,推荐浓度为 10~100 ng/mL,由自行配制或者购置有证的 Be, Co, In, Ce, U 各标准储备溶液逐级稀释混合,最终配制成硝酸 (2+98)介质。调谐液的作用主要是在仪器测定前用来调整仪器各项参数,使灵敏度、氧化物干扰、双电荷干扰、分辨率等各项指数达到测定要求。

3、仪器工作参数的选择

根据电感耦合等离子体质谱仪操作系统推荐,功率、冷却气流量、辅助气流量、扫描次数等仪器工作条件见表 5。

仪器参数	设定值
ICP功率/W	1350
冷却气流量/(L/min)	13.0
辅助气流量/(L/min)	0.7
雾化气流量/(L/min)	1.0
跳峰/(点/质量)	3
停留时间/(毫秒/点)	20
扫描次数/次	40
测量时间/s	60

表 5 仪器参考工作条件

4、标准溶液及校准曲线的配制

4.1 碘、溴标准溶液

碘标准储备溶液[ρ (I) =1.000 mg/mL]: 准确称取 1.3080 g 经 105 ℃烘干的优级纯碘化钾 (KI),置于烧杯中,用水溶解,移入 1000 mL 容量瓶,用水稀释至刻度,摇匀。

溴标准储备溶液[ρ (Br) =1.000 mg/mL]: 准确称取 1.4892 g 经 105 ℃烘干的优级纯溴化钾 (KI),置于烧杯中,用水溶解,移入 1000 mL 容量瓶,用水稀释至刻度,摇匀。

碘、溴混合标准溶液[ρ (I) =10.0 μg/mL, ρ (Br) =10.0 μg/mL]: 分别取 5.00 mL 碘和溴的标准储备溶液, 用水稀释到 500 mL, 摇匀。

4.2 校准溶液系列的配制

用碘、溴混合标准溶液按表 6 配制碘、溴混合校准溶液系列,分别置于 100 mL 棕色容量瓶中,用氨水溶液 (1+99)稀释至刻度,摇匀。也可使用市售有证碘、溴标准溶液进行稀释。碘、溴校准溶液现用现配。对于校准曲线是用水介质还是用 (1+99) 氨水介质,通过试验比对,发现两者基本没有差别,建议用 (1+99) 氨水稀释。

表 6 碘、溴校准溶液系列

单位为 ng/mL

						\mathcal{C}
元素	STD0	STD1	STD2	STD3	STD4	STD5
碘	0	5.00	50.0	100	200	500
溴	0	5.00	50.0	100	200	500

第四节 方法质量水平

1、校准曲线线性回归方程

根据土壤、水系沉积物实际样品中碘、溴的含量,校准曲线最终确定为 0 ng/mL、5.00 ng/mL、50.0 ng/mL、100 ng/mL、200 ng/mL、500 ng/mL,经测定其

校准曲线线性相关系数大于0.999,满足测定的要求。

2、检出限及测定范围

对按照本标准方法处理流程处理的全流程空白溶液连续测定 10 次,检出限通过测定结果的 3 倍标准偏差计算求得,测得的方法检出限分别为碘: 0.0084 μg/g、溴: 0.045 μg/g,方法测定下限为 10 倍标准偏差计算求得,即碘的测定范围为 0.028 μg/g~100 μg/g, 溴的测定范围为: 0.15 μg/g~100 μg/g。

考虑到基体对测定的影响,另外采用一个碘、溴含量较低的土壤样品进行了全过程 10 次测定,通过计算其 3 倍标准偏差为检出限,结果分别为碘: 0.11 μg/g、溴: 0.2 μg/g, 10 倍标准偏差为测定下限,即碘: 0.37 μg/g、 溴: 0.66 μg/g。

从两种检出限的实验方法来看检出限还是有差别的,依据样品基体存在的影响采用通过实际样品测定计算出的检出限和测定下限。结合一般土壤、水系沉积物样品中碘、溴含量和校准曲线,确定碘的检出限为 $0.11~\mu g/g$,溴的检出限为 $0.2~\mu g/g$,碘的测定范围为 $0.37~\mu g/g\sim100~\mu g/g$,溴的测定范围为 $0.66~\mu g/g\sim100~\mu g/g$,如表 $7~\mathrm{fh}$ 示。

分析同位素	内标	方法检出限(μg/g)	方法定量限(μg/g)
$^{127}\mathrm{I}$	¹⁸⁵ Re	0.11	0.37
⁷⁹ Br	¹⁸⁵ Re	0.2	0.66

表 7 方法检出限及测定范围

3、实验室内标准物质测定结果

本标准方法在我中心有着多年的生产实践基础,本标准方法采用碳酸钠和氧化锌混合试剂为熔剂,样品在马弗炉中高温提取,热水浸取,浸取液用强酸型阳离子树脂静态交换分离溶液中大量钠等阳离子,ICP-MS直接测定的方法。本标准

方法样品前处理过程简单,采用阳离子交换树脂分离了大量阳离子,分析溶液简单,可采用低稀释倍数用 ICP-MS 测定碘、溴含量。本标准方法分析速度快,可满足地质调查等应用的需要。

用本标准方法对土壤标准物质 GBW07401~07408, 水系沉积物标准物质 GBW07309~07312 中的碘、溴含量进行了分析测定, 试验数据如表 8 所示。从表中数据可以看出测定值均在标准值的允许误差范围之内。

表 8 半熔-电感耦合等离子体质谱法测定土壤、水系沉积物标准物质中碘、溴含量的分析结果 b 单位 ug/g

	平位 μg/g				
 ₩ □	I		E	Br	
样号	标准值	测定值	标准值	测定值	
GBW07401	1.9±0.4	1.95±0.31	2.9±0.5	3.20±0.31	
GBW07402	1.8±0.2	1.56±0.3	4.5±0.6	4.30±0.26	
GBW07403	1.3±0.4	1.29±0.13	4.3±0.7	4.88±0.40	
GBW07404	9.4±1.2	9.14±1.22	4.0±1.1	3.91±0.36	
GBW07405	3.8±0.8	4.43±0.51	(1.8)	1.89±0.54	
GBW07406	19.4±1.0	20.9±1.98	(7.2)	8.89±0.80	
GBW07407	19.0±2	19.4±1.92	5.2±1.2	5.06±0.38	
GBW07408	1.6±0.5	1.96±0.29	(2.6)	2.3±0.53	
GBW07309	(0.61)	0.66	(1.5)	1.79	
GBW07310	1.6± 0.4	1.87	(2.4)	2.54	
GBW07311	2.0± 0.3	2.29	(2.3)	2.53	
GBW07312	1.8 ±0.3	1.98	(1.7)	1.89	

注: ^bGBW07401~GBW07408 的测定值为 Mean±σ, n=10; () 内数据为参考值。

4、本标准方法准确度协作试验

4.1 协作试验样品信息

根据 GB/T 6379.2-2004《测量方法与结果的准确度(正确度与精密度) 第 2

部分:确定标准测量方法重复性与再现性的基本方法》、GB/T 6379.4-2006《测量方法与结果的准确度(正确度与精密度) 第4部分:确定标准测量方法正确度的基本方法》要求,优选了7家实验室连同本单位共计8家实验室,依据提供的分析方法,对7个土壤、水系沉积物标准物质分别进行了4次的独立测定。根据相应的软件进行数据统计检验。如有离群值则进行剔除,岐离值参与计算,统计计算标准方法的重复性限和再现性限以及方法的偏倚。当数据为歧离值时该数据用"**"标识、当数据为离群值时该数据用"**"标识。

精密度协作试验所选用的样品信息如表 9 所示。所选用样品中碘、溴元素含量尽量涵盖较大的水平范围。

序号	外发编号	国标编号	样品名称	碘元素含量 (μg/g)	溴元素含量 (μg/g)
1	CS-1	GBW07406	土壤	19.4±1.0	8±0.7
2	CS-2	GBW07407	土壤	19±2	5.1±0.5
3	CS-3	GBW07408	土壤	1.7±0.2	2.5±0.5
4	CS-4	GBW07451	土壤	8.6±0.7	24±2
5	CD-1	GBW07311	水系沉积物	2.0±0.3	2.2±0.5
6	CD-2	GBW07312	水系沉积物	1.8±0.3	1.7±0.4
7	CD-3	GBW07361	水系沉积物	0.46±0.1	1.0±0.2

表9协作试验用样品信息

4.2 本标准方法准确度协作试验数据统计及分析

将检测数据汇总,各家实验室碘元素分析数据结果如表 10 所示,其协作数据统计结果表如表 11 所示,溴元素分析数据结果如表 12 所示,其协作数据统计结果如表 13 所示。

表 10 碘协作试验数据汇总表

单位 μg/g

外変編号 CS-1 CS-2 CS-3 CS-4 CD-1 CD-2 CD-3 国権編号 GBW07406 GBW07407 GBW07408 GBW07451 GBW07311 GBW07312 GBW07361 校理信 19.4±1.0 19±2.0 1.7±0.2 8.6±0.7 2.0±0.3 1.8±0.3 0.46±0.1 校得										
株様値	外发编号	CS-1	CS-2	CS-3	CS-4	CD-1	CD-2	CD-3		
大学 大学 大学 19.25	国标编号	GBW07406	GBW07407	GBW07408	GBW07451	GBW07311	GBW07312	GBW07361		
$01 \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	标准值	19.4±1.0	19±2.0	1.7±0.2	8.6±0.7	2.0±0.3	1.8±0.3	0.46±0.1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	代码	水平								
19.92		19.25	17.71	1.70	9.10	2.13	1.71			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	18.59	17.92	1.70	8.74	2.01	1.72	0.47**		
$02 = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	19.92	18.41		8.60	2.07	1.82	0.40**		
$\begin{array}{c} 02 \\ \hline \\ 19.83 \\ \hline \\ 19.72 \\ \hline \\ 18.79 \\ \hline \\ 1.73 \\ \hline \\ 1.879 \\ \hline \\ 1.73 \\ \hline \\ 1.80 \\ \hline \\ 1.80 \\ \hline \\ 19.90 \\ \hline \\ 17.41 \\ \hline \\ 1.81 \\ \hline \\ 1.81 \\ \hline \\ 19.99 \\ \hline \\ 17.41 \\ \hline \\ 1.81 \\ \hline \\ 1.823 \\ \hline \\ 1.79 \\ \hline \\ 1.80 \\ \hline \\ 19.35 \\ \hline \\ 18.23 \\ \hline \\ 1.79 \\ \hline \\ 1.84 \\ \hline \\ 1.85 \\ \hline \\ 1.75 \\ \hline \\ 1.84 \\ \hline \\ 1.85 \\ \hline \\ 1.75 \\ \hline \\ 0.50 \\ \hline \\ \\ 19.31 \\ \hline \\ 18.26 \\ \hline \\ 1.82 \\ \hline \\ 1.82 \\ \hline \\ 1.84 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 1.75 \\ \hline \\ 1.84 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 0.49 \\ \hline \\ 19.73 \\ \hline \\ 18.26 \\ \hline \\ 1.82 \\ \hline \\ 1.84 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 0.49 \\ \hline \\ 19.73 \\ \hline \\ 18.26 \\ \hline \\ 1.82 \\ \hline \\ 1.84 \\ \hline \\ 1.84 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 1.85 \\ \hline \\ 0.49 \\ \hline \\ 1.85 \\ \hline \\ 0.49 \\ \hline \\ 1.85 \\ \hline \\ 1.82 \\ \hline \\ 1.82 \\ \hline \\ 1.82 \\ \hline \\ 1.82 \\ \hline \\ 1.87 \\ \hline \\ 1.85 \\ \hline \\ 0.39 \\ \hline \\ 1.85 \\ \hline \\ 1.990 \\ \hline \\ 17.90 \\ \hline \\ 1.80 \\ $		18.76	18.85	1.87**	9.05	1.91	1.61	0.42**		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.69	18.94	1.82	8.41	2.02	1.97	0.51		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	19.83	18.90	1.88	8.36	2.16	1.84	0.52		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	19.72	18.79	1.73	8.63	2.08	1.73	0.52		
03 19.35 18.23 1.79 8.01 1.84 1.85 0.49 19.41 17.45 1.89 8.52 1.75 1.74 0.49 19.73 18.26 1.82 8.67 2.18*** 1.85 0.49 18.5 19.7** 1.84 9.08 1.95 1.63 0.41 19.2 20.8*** 1.89 8.82 1.87 1.56 0.39 19.3 20.7*** 1.82 9.30 1.87 1.60 0.39 18.5 19.9** 1.82 9.27 1.97 1.70 0.42 19.90 17.90 1.80 8.90 2.02 1.56 0.49 20.10 17.70 1.75 8.70 2.02 1.72 0.51 19.70 18.90 1.78 8.10 2.10 1.78 0.48 19.30 18.00 1.80 8.50 1.88 1.82 0.50 19.59 18.30 1.74 8.52<		20.00	19.05	1.80	8.77	2.12	1.96	0.50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.99	17.41	1.81	8.07	1.86	1.75	0.50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02	19.35	18.23	1.79	8.01	1.84	1.85	0.49		
$04 \\ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03	19.41	17.45	1.89	8.52	1.75	1.74	0.49		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19.73	18.26	1.82	8.67	2.18**	1.85	0.49		
04 19.3 20.7** 1.82 9.30 1.87 1.60 0.39 18.5 19.9** 1.82 9.27 1.97 1.70 0.42 19.90 17.90 1.80 8.90 2.02 1.56 0.49 20.10 17.70 1.75 8.70 2.02 1.72 0.51 19.70 18.90 1.78 8.10 2.10 1.78 0.48 19.30 18.90 1.80 8.50 1.88 1.82 0.50 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86		18.5	19.7**	1.84	9.08	1.95	1.63	0.41		
19.3 20.7° 1.82 9.30 1.87 1.60 0.39 18.5 19.9°* 1.82 9.27 1.97 1.70 0.42 19.90 17.90 1.80 8.90 2.02 1.56 0.49 20.10 17.70 1.75 8.70 2.02 1.72 0.51 19.70 18.90 1.78 8.10 2.10 1.78 0.48 19.30 18.00 1.80 8.50 1.88 1.82 0.50 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.82 1.59 0.46 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42	0.4	19.2	20.8**	1.89	8.82	1.87	1.56	0.39		
19.90 17.90 1.80 8.90 2.02 1.56 0.49 20.10 17.70 1.75 8.70 2.02 1.72 0.51 19.70 18.90 1.78 8.10 2.10 1.78 0.48 19.30 18.00 1.80 8.50 1.88 1.82 0.50 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.2 1.78 8.66 1.79	04	19.3	20.7**	1.82	9.30	1.87	1.60	0.39		
05 20.10 17.70 1.75 8.70 2.02 1.72 0.51 19.70 18.90 1.78 8.10 2.10 1.78 0.48 19.30 18.00 1.80 8.50 1.88 1.82 0.50 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66		18.5	19.9**	1.82	9.27	1.97	1.70	0.42		
05 19.70 18.90 1.78 8.10 2.10 1.78 0.48 19.30 18.00 1.80 8.50 1.88 1.82 0.50 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11		19.90	17.90	1.80	8.90	2.02	1.56	0.49		
19.30 18.00 1.80 8.50 1.88 1.82 0.50 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00		20.10	17.70	1.75	8.70	2.02	1.72	0.51		
19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08	05	19.70	18.90	1.78	8.10	2.10	1.78	0.48		
06 19.59 18.30 1.74 8.52 2.07 1.86 0.47 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42		19.30	18.00	1.80	8.50	1.88	1.82	0.50		
06 19.45 18.26 1.72 8.49 2.03 1.83 0.47 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42		19.59	18.30	1.74	8.52	2.07	1.86	0.47		
06 19.71 18.83 1.73 8.53 2.06 1.85 0.46 19.71 18.99 1.74 8.86 1.96 1.87 0.47 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42		19.59	18.30	1.74	8.52	2.07	1.86	0.47		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	06	19.45	18.26	1.72	8.49	2.03	1.83	0.47		
07 19.0 17.6 1.78 8.68 1.82 1.59 0.46 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42	06	19.71	18.83	1.73	8.53	2.06	1.85	0.46		
07 19.0 18.4 1.78 8.68 1.75 1.60 0.49 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42		19.71	18.99	1.74	8.86	1.96	1.87	0.47		
07 18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42		19.0	17.6	1.78	8.68	1.82	1.59	0.46		
18.9 18.7 1.77 8.35 1.87 1.59 0.47 18.9 18.2 1.78 8.66 1.79 1.63 0.49 19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42	07	19.0	18.4	1.78	8.68	1.75	1.60	0.49		
19.26 18.64 1.80 9.23 2.06 1.72 0.39 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42	U/	18.9	18.7	1.77	8.35	1.87	1.59	0.47		
08 19.85 18.25 1.82 9.11 2.00 1.76 0.43 19.76 18.08 1.78 9.23 2.08 1.64 0.42		18.9	18.2	1.78	8.66	1.79	1.63	0.49		
08 19.76 18.08 1.78 9.23 2.08 1.64 0.42		19.26	18.64	1.80	9.23	2.06	1.72	0.39		
19.76 18.08 1.78 9.23 2.08 1.64 0.42	00	19.85	18.25	1.82	9.11	2.00	1.76	0.43		
19 38 18 78 1 81 9 03 2 05 1 73 0 40	U8	19.76	18.08	1.78	9.23	2.08	1.64	0.42		
17.30 10.70 1.01 7.03 2.03 1.73 0.40		19.38	18.78	1.81	9.03	2.05	1.73	0.40		

表 11 碘含量协作试验数据统计表

样品/水平	CS-1	CS-2	CS-3	CS-4	CD-1	CD-2	CD-3
重复测定次数 n	4	4	4	4	4	4	4
参加实验室数 p	8	8	8	8	8	8	8
可接受实验室数	8	7	8	8	8	8	7
重复性标准差 Sr	0.34	0.42	0.03	0.23	0.06	0.07	0.01
重复性变异系数	1.75	2.29	1.94	2.67	3.27	4.26	2.68
再现性标准差 S_R	0.47	0.51	0.05	0.36	0.12	0.12	0.04
再现性变异系数	2.41	2.76	2.81	4.12	6.10	6.79	9.49
重复性限 2.8×S _r	0.96	1.19	0.10	0.66	0.18	0.21	0.04
再现性限 2.8×S _R	1.32	1.43	0.14	1.02	0.34	0.33	0.12
γ	1.376	1.202	1.454	1.543	1.862	1.595	3.537
A	0.737	0.751	0.733	0.728	0.718	0.726	0.7
总平均值 (y)	19.39	18.58	1.79	8.72	1.98	1.74	0.46
标准值 (μ)	19.4±1.0	19±2.0	1.7±0.2	8.6±0.7	2.0±0.3	1.8±0.3	0.46±0.1
相对误差 RE(%)	-0.1	-3.5	5.2	1.4	-1.35	-3.5	1.1
测量方法偏倚 (δ)	-0.015	-0.662	0.089	0.118	-0.027	-0.063	0.005
置信区间 δ - AS_R	-0.36	-1.042	0.052	-0.144	-0.113	-0.148	-0.026
置信区间 δ + AS_R	0.33	-0.283	0.126	0.38	0.06	0.023	0.036

表 12 溴协作试验数据汇总表

单位 μg/g

外发编号	CS-1	CS-2	CS-3	CS-4	CD-1	CD-2	CD-3		
国标编号	GBW07406	GBW07407	GBW07408	GBW07451	GBW07311	GBW07312	GBW07361		
标准值	8±0.7	5.1±0.5	2.5±0.5	24±2.0	2.2±0.5	1.7±0.4	1.0±0.2		
代码		水平							
	8.52	4.91	2.11	23.77	2.16	1.89	1.19		
01	8.59	5.33	2.17	24.23	2.01	1.74	0.93		
	8.42	5.39	2.18	23.17	2.11	1.72	1.04		
	8.59	4.93	2.11	25.19	1.98	1.76	0.97		
	7.98	5.02	2.54	22.78	2.28	1.66	1.07		
02	8.08	4.91	2.60	23.45	1.95	1.71	1.03		
02	7.89	4.87	2.64	22.18	2.19	1.58	1.18		
	8.25	5.09	2.77	23.90	2.18	1.65	1.08		
	7.72	5.07	2.09	24.59	2.03	1.57	1.15		
03	7.97	5.16	2.30	24.19	2.39	1.70	1.02		
03	7.81	4.85	2.47**	24.64	2.24	2.05**	1.12		
	7.57	4.99	1.99	24.95	2.18	1.79	1.30		

04	8.64	5.05	2.11	23.02	1.83	1.36	0.87
	8.25	5.45	2.28	22.60	1.75	1.30	0.81
04	8.53	5.49	1.99	22.84	1.76	1.35	0.94
	8.86	5.11	2.19	22.63	1.86	1.38	0.82
	8.50	4.80	2.60	24.16	2.08	1.67	1.02
05	8.70	4.70	2.80	24.60	1.91	1.39	0.97
03	8.49	5.00	2.70	24.30	2.16	1.61	1.00
	8.80	5.00	2.80	24.30	2.04	1.46	1.01
	8.08	5.21	2.53	24.05	2.29	1.71	1.03
06	8.32	5.32	2.56	25.09	2.24	1.73	1.06
06	7.98	5.26	2.55	24.66	2.35	1.71	1.03
	7.98	5.15	2.53	25.08	2.22	1.72	1.06
	8.06	5.34	2.66	23.50	2.26	1.38	1.05
07	7.85	5.11	2.76	24.20	2.30	1.37	1.05
	7.64	5.03	2.75	23.30	2.36	1.38	1.07
	7.95	5.02	2.86	23.10	2.34	1.37	1.08
08	7.90	5.22	2.65	24.60	2.54	1.99	1.18
	8.02	5.49	2.56	23.90	2.21	1.85	1.12
00	8.38	5.26	2.77	23.40	2.44	1.66	1.16
	8.13	5.54	2.46	24.50	2.47	1.95	1.09

表 13 溴协作试验数据统计表

样品/水平	CS-1	CS-2	CS-3	CS-4	CD-1	CD-2	CD-3
重复测定次数 n	4	4	4	4	4	4	4
参加实验室数 p	8	8	8	8	8	8	8
可接受实验室数 p	8	8	8	8	8	8	8
重复性标准差 S _r	0.18	0.17	0.10	0.53	0.11	0.09	0.07
重复性变异系数	2.14	3.23	4.04	2.22	4.87	5.32	6.47
再现性标准差 SR	0.36	0.22	0.29	0.84	0.21	0.20	0.11
再现性变异系数	4.42	4.30	11.57	3.53	9.81	12.5	10.33
重复性限 2.8×S _r	0.50	0.47	0.28	1.50	0.30	0.24	0.19
再现性限 2.8×S _R	1.03	0.62	0.81	2.39	0.60	0.57	0.31
γ	2.071	1.329	2.866	1.592	2.013	2.348	1.596
A	0.713	0.74	0.703	0.726	0.714	0.708	0.726
总平均值 (y)	8.20	5.13	2.47	23.9	2.16	1.63	1.05
标准值 (μ)	8±0.7	5.1±0.5	2.5±0.5	24±2.0	2.2±0.5	1.7±0.4	1.0±0.2
相对误差 RE(%)	2.5	0.5	-1.2	-0.4	-1.82	-4.9	4.7
测量方法偏倚 (δ)	0.202	0.027	-0.029	-0.098	-0.04	-0.084	0.047
置信区间 δ - AS_R	-0.057	-0.136	-0.23	-0.711	-0.192	-0.227	-0.032
置信区间 δ + AS_R	0.46	0.19	0.172	0.515	0.111	0.06	0.125

首先,对测试结果进行一致性和离群检验,一致性检验用曼德尔 h 和 k 统计量的度量方法剔除离群值。离群检验用柯克伦(Cochran)和格拉布斯(Grubbs)检验剔除离群值,保留歧离值。再用检验合格的数据计算重复性方差(S_r)和再现性方差(S_R),建立精密度值重复性限 r、重复性限 R 和平均水平 m 之间的函数关系式,见表 14。

表 14 半熔-电感耦合等离子体质谱法测定碘、溴含量的精密度

单位 μg/g

元	素	水平范围 m ^a	重复性限 r	再现性限 R
砂	Ė.	1.74~19.98	r=0.105+0.0817m	$R = 0.0834m^{0.8987}$
溴	Ę	1.05~23.9	r=0.152+0.0537m	R = 0.377 + 0.0831m

注: a 表中 m 为测试结果的总平均值

第五节 本标准方法试验验证结论

根据以上的一系列验证试验结果表明, ICP-MS 测定碘、溴元素线性范围宽, 工作曲线线性相关性系数好,方法准确度、精密度数据等都符合要求,误差在规 定范围内。编写的《土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子 体质谱法》依据充分,检测数据准确可靠。

第六节 技术经济论证

本标准方法在我中心已有多年的生产实践基础。通过系统的方法条件试验研究,大量土壤、水系沉积物标准物质验证和我中心多年以来大量的生产实践证明:《土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法》,精密度高,方法简单、快速,有效克服了碘、溴信号不规则增加的现象,增强了地质样品分解的效率,有效提高了分析效率,具有良好的经济效益。

第四章 采用国际标准和国外先进标准的程度以及与国际、国内同 类标准水平的对比情况

本次制订的《土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法》未查询到与本标准相关的国际和国内标准,该标准是自行研制的国家标准方法,处在世界先进位置。

第五章 与有关的现行法律、法规和标准的关系

本标准在起草时遵循了《中华人民共和国标准化法》等法律规定,按照 GB/T1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》和 GB/T 20001.4-2015《标准编写规则 第4部分 试验方法标准》的要求进行编写。

第六章 重大分歧意见的处理经过和依据

本标准制定过程中无重大分歧意见。

第七章 标准作为强制性和推荐性标准的建议

我国标准化法规定:保障人体健康、人身财产安全的标准和法律,行政法规规定强制执行的标准属于强制性标准。

由于本标准不涉及以下几方面的技术要求:

- 1、有关国家安全的技术要求;
- 2、保障人体健康和人身、财产安全的要求;
- 3、产品及产品生产、储运和使用中的安全、卫生、环境保护要求及国家需要控制的工程建设的其他要求;
- 4、工程建设的质量、安全、卫生、环境保护按要求及国家需要控制的工程建设的其他要求;
- 5、污染物排放限值和环境质量要求;
- 6、保护动植物生命安全和健康要求;
- 7、防止欺骗、保护消费者利益的要求;
- 8、国家需要控制的重要产品的技术要求。

因此,建议本标准为推荐性标准。

第八章 贯彻标准的要求和措施建议

本标准发布后,建议由全国自然资源与国土空间规划标准化技术委员会制定标准贯彻实施计划。有条件的实验室,可根据需要选择采用本标准开展土壤、水系沉积物样品中碘、溴元素含量的分析,以加强对本标准的推广应用。

第九章 废止现行有关标准的建议

本标准为首次发布, 无现行标准和本标准类同, 不涉及废止现行标准问题。

第十章 其他应予说明的事项

无。